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Abstract  

This study uses advanced statistical tests and models to investigate the presence of long-term 

memory in oil price benchmarks such as Average Oil, Brent Crude, Dubai Crude, and West Texas 

Intermediate. The data for this study are historical prices of major benchmark crude oils. For 

example, average benchmark crude oil prices obtained by taking a weighted average of these 

various crude oils (COA), Brent Crude (COB), Dubai Crude (COD) and West Texas Intermediate 

(WTI) are calculated. The data is taken from the Organization of the Petroleum Exporting 

Countries website (https://www.opec.org) and a total of 1984 data points are extracted for months 

from January 1982 to April 2023.  ARFIMA, FIGARCH, HYGARCH, and FIAPARCH models are 

used to capture the complex dynamics and long-term dependencies of oil price fluctuations. Using 

the Akaike Information Criteria (AIC), the ARFIMA (1, -0.021, 1) model was considered the most 

appropriate among the competing models for Long Memory Processes in Crude Oil Prices. The 

results indicate significant long-term dependencies, persistence, and volatility accumulation in the 

oil price benchmarks. The results show that the crude oil price benchmarks exhibit asymmetry, 

non-stationarity, and long-run dependence, with significant fractional integral roots (d) and other 

parameters estimated by the model. The study concludes that shocks have transitory effects and 

that all series, except brent crude, exhibit mean-reverting behavior. The results have implications 

for oil price forecasting and modeling and highlight the importance of considering long memory 

processes in capturing the complex dynamics of oil price fluctuations. 
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1. Introduction 

For a long time, oil prices have dominated attention in the global economy, having an impact on 

everything from international trade balances to rates of inflation. The fluctuations and 

unpredictability of oil prices carry substantial consequences for investors, governments, and 

sectors that rely on this essential resource (Hamilton, 2009). More advanced and reliable 
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approaches must be developed due to the global oil market's complexity, volatility, and the 

shortcomings of current models (Kilian, 2009).  To improve inference and support data-driven 

decision-making in the oil industry and related fields, this study explores the application of long-

memory processes that can effectively capture the complex dynamics and long-term dependencies 

characteristic of oil price fluctuations (Deebom, Mazi, Chims, Richard & George,2021). This study 

attempts to solve the problem of accurately modeling and forecasting oil prices. 

The long-term interdependence and enduring patterns present in oil price changes are frequently 

missed by traditional crude oil price modeling techniques, producing imprecise forecasts and less-

than-ideal decision-making. The intricate dynamics and long-term relationships included in 

changes in oil prices are sometimes too complicated for traditional modeling techniques to 

adequately represent. This article provides a novel framework for comprehending and forecasting 

price fluctuations by investigating the use of long memory processes in modeling crude oil prices. 

This research attempts to deliver more accurate inference capabilities by utilizing the advantages 

of extended memory models, ultimately guiding data-driven decision making in the oil sector and 

beyond. 

 

3. Methodology  

The data for this study are historical prices of major benchmark crude oils such as the average 

benchmark crude oil price obtained by taking the weighted average of these various crude oils 

(COA), Brent crude oil (COB), Dubai crude oil (COD) and West Texas Intermediate (WTI) are 

calculated. The data is from the Organization of Petroleum Exporting Countries website 

(https://www.opec.org) and a total of 1984 data points were extracted for months from January 

1982 to April 2023. The two robust statistical modeling and forecasting software programs used 

for the analysis were Stata and Oxmetrics. Time charts of the data series were also created to reveal 

the underlying dynamics of the crude oil price time series by making the trends and seasonality of 

the data easier to see. Similarly, descriptive statistics were examined to explore some 

characteristics of the data such as the mean, variance and skewness of the log returns. Unit root 

tests were performed to check for signs of non-stationarity in the data. The raw price data was 

converted into log returns, which show the rate of change in prices over time, and volatility, which 

measures the amount of fluctuation in prices. Time series modelling requires that the data are 

stationary, and this phase ensures that the log returns and volatility of the crude oil price benchmark 

were scaled to conditional compound monthly returns, calculated as follows: 

1
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COAR Log X
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=  
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        (1) 

The returns on average benchmark oil price which is calculated by taking a weighted average of 

these different crude oils (COAR), Brent Crude (COBR), Dubai Crude (CODR) and West Texas 

Intermediate (COWTIR).   

 

Symmetric and Asymmetric Volatility in Long Memory Processes 

When modeling financial time series such as crude oil prices, it is important to consider volatility 

and persistence (Deebom, Bharat & Inamete,2020). These properties are captured by long memory 

processes, which are characterized by slowly decreasing autocorrelation and infinite second 

moments. On the other hand, traditional long memory models such as ARFIMA, FIGARCH, and 

HYGARCH assume symmetric volatility, which is not always the case. Recent advances in long 

memory modeling have resulted in the introduction of asymmetric models such as FIAPARCH, 
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which can capture both symmetric and asymmetric volatility. In this study, we investigate 

symmetric and asymmetric volatility in long memory processes, paying special attention to the 

specifications of ARFIMA, FIGARCH, HYGARCH, and FIAPARCH. This study reviews the 

conclusions, characteristics and applications of these models, highlighting their advantages when 

applied to modelling crude oil prices. 

 

ARFIMA Model  

The ARFIMA model, according to Sanusi et al. (2015) simply represent an acronym that stand for 

autoregressive fractional integrated moving average. The general form of an ARFIMA model as 

was defined as:  

),0(,)()1()( 2

tt

q

t

d LbYLB  =−        (2)
 

)(B  Is the Autoregressive Operator  

b  is the Moving Average Operator 

d represents a fractional integration real number parameter,  

L denotes the lag operator and ft is a white noise residual.  

(1 – L)d    stands for the fractional differencing lag operator. 

Considering two cases of the “d”, when d = 0 and d = 1.  The “d” used in the model lies between 

Zero and one i.e 10  d ( Granger & Joyeaux ,1980) 

 

FIGARCH Model  

Baillie, Bollerslev, and Mikkelsen introduced the FIGARCH model in Chungs (1999) in 1996. A 

statistical model known as FIGARCH or Fractionally Integrated Generalized Autoregressive 

Conditional Heteroskedasticity is used to describe the behavior of long-term memory under 

variability (Chung, 1999). The FIGARCH model is defined and redefined in Chung's (1999) 

specification as follows: 

∅ (L) (1 – L)𝑑(𝜀𝑡
2 - 𝜎2) = [ 1 – 𝞫(L)] (𝜀𝑡

2 - 𝜎𝑡
2)      (3) 

where 𝜎2 is the unconditional variance of 𝜀𝑡 If we retain the same definition of 𝜆(L) as in (22), we 

can formulate the conditional variance as: 

ℎ𝑡 =𝜎2 + { 1 -[ 1 – 𝞫(L)]−1 𝞥(L)(1 - L)𝑑}(𝜀𝑡
2 - 𝜎2)          (4)                                                        

ℎ𝑡 = 𝜎𝑡
2 + (L)(𝜀𝑡

2 - 𝜎2)           

where:   ℎ𝑡 is the return at time t 

𝜎𝑡
2 is the conditional volatility at time t 

𝜀𝑡  is the error term at time t 

𝞥 is a constant 

α and β are parameters that capture the short-term dynamics of volatility 

𝞥(L) is a polynomial in the lag operator L, of order m-1, where m is the maximum of p and q 

 d is a parameter that captures the long memory behavior of volatility, with 0 < d < 1 

(1 - L)𝑑 is the fractional differencing operator.  Note that when d = 0, the FIGARCH model reduces 

to the standard GARCH model, and when d= 1, it reduces to the Integrated 

GARCH (IGARCH) model. 

 

HYGARCH model 

Hyperbolic GARCH is derived from Davidson (2004). The hyperbolic GARCH model 

(HYGARCH) extends the conditional variance of the FIGARCH model by introducing weights to 

the differential operators. The HYGARCH model can model the long memory property in the 
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conditional volatility using hyperbolic convergence rates. The HYGARCH model (1, d,1) can be 

written as: 

 

 1 21 (1 ) 1 (1 ) 1)d

t th L L L    − = + − − + − −
 

      (5) 

Where  >0, 0  , 1    and  0 1d   

Davidson (2004) notes that the HYGARCH model can also be considered a more general version 

of the FIGARCH model, with its hyperbolic convergence rate and larger amplitude extreme values.  

In fact, the hyperbolic GARCH model can also be considered a more general version of the 

FIGARCH model, with its hyperbolic convergence rate and larger amplitude extreme values than 

the simpler IGARCH and FIGARCH models. 

 

FIAPARCH (p, d, q) model 

The FIAPARCH (p, d, q) model by Tse (1998) modifies the FIGARCH process to account for 

asymmetries. It combines the long memory property with asymmetric conditional volatility 

features. The asymmetries may be explained by the so-called "leverage effect" (Black (1976)). Tse 

(1998) proposes the FIAPARCH (p, d, q) model by extending the FIGARCH (p, d, q) model and 

the APARCH10- model function ( )t t


 − to capture the asymmetries and long memory features 

of conditional volatility.  The FIAPARCH (p, d, q) model can be written as: 

𝜎𝑡 
𝛿  =ω +{1 - [ 1 – 𝞫(L)]−1 𝞥(L)(1 - L)𝑑}(│𝜀𝑡 │ - 𝛄𝜀𝑡)2         (6) 

where y is the leverage coefficient, and 𝛿 is the parameter for the power term that takes (finite) 

positive values. When d = 0, the FLAPARCH (p,d.q) process reduces to APARCH of’ Ding et al. 

(1993). When y = 0 and 𝛿 = 2, the process in Chung (1999) redefines the FIGARCII model as 

∅ (L) (1 – L)𝑑(𝜀𝑡
2 - 𝜎2) = [ 1 – 𝞫(L)] (𝜀𝑡

2 - 𝜎𝑡
2), where 𝜎2 is the unconditional variance of 𝜀𝑡  

reduces to the FIGARCH (p,d,q) specification. which includes Bol1erslev’s1986) model when d 

= 0, and the integrated specification when d = 1, as special cases. 

 

3.5. Steps involved in ARFIMA and FIGARCH Modeling  

The following are the ARFIMA model's analysis steps:  

1. Descriptive Statistics  

 In the analysis phase, we use descriptive statistics to investigate the characteristics and normality 

attributes of the historical benchmarks of crude oil prices and earnings. Chinyere et al. (2015) state 

that the test statistic obtained from the definition of the Jarque-Bera test indicates a joint test of 

skewness and kurtosis, which examines whether the data values have the characteristics of a 

normal distribution. The degrees of freedom of the test statistic under the null hypothesis of normal 

distribution is 2.  

 

2. Determining ACF and PACF 

Autoregressive conditional heteroskedasticity (ARCH) is further performed on the log 

transformation and is designed to measure the effect of heteroskedasticity, i.e., the time-varying 

variance in the series. This can be seen by plotting the ACF of the squared residuals from the 

model. If the autocorrelation function (ACF) of the squared residuals shows long-run dependence, 

then the ARCH effect is present. Similarly, to identify the components of the model, an analysis 

of the autocorrelation function (ACF) and partial autocorrelation function (PACF) of the original 

time series was required. Recording the ACF and PACF of the time series is the first step in 
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determining the AR components. If the ACF shows a rapidly decreasing pattern where the initial 

values deviate significantly from zero, then the time series contains an AR component. It is 

equivalent to plotting the partial autocorrelation function (PACF) of the original time series. A 

sharp increase at lag 1 in the PACF followed by a sharp decrease to a value near zero indicates the 

presence of an MA component (1) in the time series. A large increase at lags 1 and 2 in the PACF 

indicates the presence of an MA component (2). 

 

3. Long-term Memory Tests  

Several tests, such as Lo's Rescaled Range (R/S) statistic, Geweke-Porter-Hudak (GPH) test, and 

Generalized Portmant statistic (GPS), are applied to time series to determine the presence of this 

long-term effect. Lo's Rescaled Range (R/S) statistic was originally proposed by Hurst (1951) and 

later modified by Lo (1991). Lo (1991) pointed out that the original statistic is not robust to short-

range dependence. In addition, Geweke and Porter-Hudak (1983) proposed a semiparametric 

approach to test for long-term memory using the following regression: The Gaussian 

semiparametric estimation proposed by Robinson and Henry (1999) is based on the maximum 

likelihood estimator with Whittle approximation. The GPH estimation approach is used to 

determine whether the data has a long-term memory effect. When the value of d is between 0 and 

1, as determined by the GPH estimation method, the data exhibits long memory effects.  

 

4. Formulation of ARFIMA, FIGARCH, HYGARCH, FIAPARCH Model Structures  

The formation of ARFIMA, FIGARCH, HYGARCH, FIAPARCH models is done by testing the 

data for stationarity and the presence of autocorrelation using the L Jung-Box (Q) test statistic. 

The presence of autocorrelation justifies identifying the AR and MA structures of the models using 

the Autocorrelation Function (ACF) and Partial Autocorrelation Function (PACF) plots. Based on 

the ACF and PACF charts, select one or more AR and MA in the ARFIMA, FIGARCH, 

HYGARCH, and FIAPARCH model structures. Next, the parameters of the ARFIMA, FIGARCH, 

HYGARCH and FIAPARCH models are calculated. 
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Results and Discussion 
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Figure 1 Time Plot on Raw Crude Oil Price Benchmarks 
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Figure 2 Time Plots on Crude Oil Price Benchmarks Returns 

 

The time plots in Figures 1 to 2 are on the price and returns on crude oil price Average, Brent, 

Dubai and West Texas Intermediate from 1982, January to May 2023. The Figure 1 is done to 

visualized as well determine the trends in the movement in crude oil price benchmarks.  Also, from 

visual examination of the crude oil prices behavior in figure 2 shows that the price series are 

stationary and fluctuate around the origin.  It also reveals the presence of a clustering volatility.  
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Table 1:  Descriptive Statistics for Crude Oil Price Benchmarks (Returns and Raw) 

 COAR COBR CODR COWTIR COA COB COD COWTI 

 Mean  0.173  0.172  0.182  0.164  44.885  46.0149  43.899  44.741 

 Median  0.902  0.565  0.866  0.801  30.700  30.975  28.950  31.730 

 Maximum  43.020  43.263  49.102  54.744  132.830  133.870  131.220  133.930 

 Minimum -50.491 -51.143 -54.012 -59.262  9.620  9.450  7.850  11.310 

 Std. Dev.  9.163  9.3701  9.474  9.411  30.395  31.741  31.162  28.463 

 Skewness -0.677 -0.549 -0.707 -0.676  0.890  0.9149  0.903  0.876 

 Kurtosis  8.313  6.859  9.274  11.028  2.603  2.657  2.612  2.648 

 Jarque-Bera 
 620.109  331.795  853.059 

 1367.02

0 

 68.692  71.623  70.548  65.952 

 Probability  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000 

 Observations  495  495  495  495  496  496  496  496 

 

The results in Table 1 show the descriptive statistics of the returns and crude oil series relative to 

the Nigerian Crude Oil Price. This is done to check if the price benchmark returns meet the 

assumption of normality and is estimated using the Jacque-Bera test. The results show that the 

average prices of both yield and crude oil series are positive such that the average prices of Crude 

Oil are (0.173), Brent (0.172), Dubai Crude (0.182), West Texas Intermediate (0.164), and the 

average prices of West Texas Intermediate (44.885), Brent (46.0149), Dubai Crude (43.899), and 

West Texas Intermediate (44.741). Similarly, the skewness results show that the return series is on 

average (-0.677), Brent (-0.549), Dubai Crude (-0.707), and West Texas Intermediate (-0.676). 

This means that the series are all skewed to the right. On the other hand, the Crude Oil series has 

the Mean Price (0.890), Brent Crude Oil (0.9149), Dubai Crude Oil (0.903), and West Texas 

Intermediate Price (0.876), which are all skewed to the right. Kurtosis also indicates the number 

of tails in the data distribution. Thus, the series returns show that the mean (8.313), Brent (6.859), 

Dubai (9.274), and West Texas Intermediate (11.028) are all greater than 3, indicating that the data 

distribution is leptokurtic. The kurtosis of all raw series is less than 3: mean (2.603), Brent (2.657), 

Dubai (2.612), and West Texas Intermediate (2.648). This indicates that the data distribution is 

leptokurtic. Although the data set is focused on the tip and has many outliers, the reduction in 

kurtosis corresponds to the broadening of the tip and the "thickness" of the tail. The distribution 

of the data has a sharp peak. Similarly, the Jarque-Bera test is a goodness-of-fit test that determines 

whether the skewness and kurtosis of a data sample are consistent with a normal distribution. The 

results of the Halké-Bella statistic show that for the return series, such returns apply to the mean 

(620.109), Brent (331.795), Dubai (853.059), and West Texas Median Price (1367.020) whereas 

for the raw series mean (68.692), Brent (71.623), Dubai (70.548), and West Texas Median Price 

(65.952). The conclusion of the study is that since all p-values are less than 0.05, we reject the null 

hypothesis and conclude that all variables are not actually significant at the 95% confidence level. 

In this sense, Deebom and Tuaneh (2019), Deebom, Bharat, and Inamete (2020),  Deebom, Ette 

and Nwikorga (2021) and Ali, Nzotta, Akujuobi, and Nwaimo (2022) suggest that  alternative 

inferential statistics in testing  the performance of partially integrated models with applications to 

price-earnings ratios include estimating unit roots, model identification using ACF and PACF, and 

determining the presence of long memory, which are performed before estimating the model 

parameters. 
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Table 2: Unit Test Results  using the Augmented Dickey Fuller for Crude Oil Price 

Benchmarks  

Variable  t-Statistic P-Value  Remarks  

COA -2.220  0.199 1(1) 

D(COA) -14.976  0.000 

COB -2.172 0.217 1(1) 

D(COB) -15.415 0.000 

COD -2.171  0.217 1(1) 

D(COD) -14.637  0.000 

COWTI -2.367 0.152 1(1) 

D(COWTI) -15.396  0.000 

 

The results of the unit test Results using the Augmented Dickey Fuller (ADF) for crude oil price 

Benchmarks is shown in Table 2. The variables of crude oil price Benchmarks were found to   

stationary at first difference.  The results for test of the presence of long memory in crude oil price 

benchmarks were further investigated using Lo’s R/S, GPH and Robinson Test as shown in Table 

3 below.  

 

Table 3: Results for Test of the Presence of Long Memory in Crude Oil Price Benchmarks 

Raw Series COA COB COD COWTI 

Lo’s R/S Test [ 0.861, 1.747] 

[ 0.809, 1.862] 

[ 0.721, 2.098] 

[0.861, 1.747] 

[0.809, 1.862] 

[0.721, 2.098] 

[0.861, 1.747] 

[0.809, 1.862] 

[0.721, 2.098] 

[0.861, 1.747] 

[0.809, 1.862] 

[0.721, 2.098] 

GPH Test     

M = T0.5 

M = T0.6 

M = T0.7 

M = T0.8 

[0.838***] 

[0.934***] 

[1.010***] 

[1.141***] 

[0.873***] 

[0.989***] 

[1.015***] 

[1.104***] 

[0.864***] 

[0.952***] 

[1.005***] 

[1.140***] 

[0.785***] 

[0.865***] 

[0.954***] 

[1.127***] 

Robinson Test 

0.5 

0.6 

0.7 

0.8 

[0.830***] 

[0.931***] 

[1.001***] 

[1.105***] 

[0.881***] 

[0.956***] 

[1.006***] 

[1.069***] 

[0.865***] 

[0.950***] 

[0.996***] 

[1.105***] 

[0.788*] 

[0.862*] 

[0.946*] 

[1.093*] 

The results were all tested at 1%, 5% and 10% level of Significance, while*, **, and *** 

represents the 1%, 5% and 10% level of significance. 

 

The results in Table 3 are used to test for the presence of long-term memory in the crude oil price 

benchmark using Lo's R/S, GPH and Robinson tests. Lo's R/S test measures the fractal dimension 

of the time series and detects long-range dependence (LRD), while the GPH test provides statistics 

to detect LRD in non-stationary time series and Robinson test is used to detect asymmetry in the 

time series (Deebom, Essi & Amos, 2022). Volatility, which is an important feature of long-term 

memory processes. The inference drawn from the investigations is that since all the p-values are 

values less than 1, 5 and 10 percent level of Significance respectively, therefore we reject the null 

hypothesis and conclude that the series have long-range dependence or long memory, the GPH test 

results show the LRD is non-stationary and it is asymmetric in nature. The results for L Jung-Box 

(Q) Statistic are shown in table 5 below. 
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Table 4: Estimates of the L Jung-Box (Q) Statistic in Crude Oil Price Benchmarks 

Prices  Q-statistic Probability 

COA Q(5) 1592.717 0.020 

Q(10) 2922.286 0.000 

Q(20) 5109.223 0.000 

Q(50) 8984.009 0.000 

COB Q(5) 1584.439 0.000 

Q(10) 2901.609 0.000 

Q(20) 4932.883 0.000 

Q(50) 8082.934 0.000 

 Q(5) 1622.64 0.000 

COD Q(10) 3008.647 0.000 

 Q(20) 5106.029 0.000 

 Q(50) 7404.828 0.000 

COWTI Q(10) 3008.647 0.000 

 Q(20) 5106.029 0.000 

 Q(50) 7404.828 0.000 

The results were all tested at 1%, 5% and 10% level of significance respectively 

 

 
Figure 3:  ACF on Crude Oil Average Price   
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Figure 4:  PACF for Crude Oil Price in Brent Blend 

 

  
Figure 5:  ACF for Crude Oil Price in Brent Blend 

 

 
Figure 6: PACF for Crude Oil Price in Brent Blend 
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Figure 7: ACF for Crude Oil Price in Dubai 

 

 
Figure 8: PACF for Crude Oil Price in Dubai 

 

Figure 9: ACF for Crude Oil Price in  West Texas Intermediate 
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Figure 10: PACF for Crude Oil Price in West Texas Intermediate 

 

In Figures 3-10, we have ACF and PACF of Crude Oil Prices, Figures 3 and 4 show the ACF 

(Autocorrelation Function) and PACF (Partial Autocorrelation Function) of the average crude oil 

price time series. Figures 5 and 6 show the ACF and PACF of the Brent Blend crude oil price time 

series, Figures 7 and 8 show the ACF and PACF of the Dubai crude oil price time series and 

Figures 9 and 10 show the ACF and PACF of the West Texas Intermediate (WTI) crude oil price 

time series. The plots of the ACF and PACF of Crude Oil Prices in Figures 3-10 shows a gradually 

declined with spikes 1, -2,7,10, -16,24, -26,27, and -34 above confidence band for the 

Autoregressive (AR) Model while the PACF falls from 1,2,4, 5 to 40 for the Moving Average 

Model. The Summary of Autoregressive (AR) and Moving Average (MA) lags Structure of the 

Models Using PACF and ACF Plots is shown in Table 5 below.  

 

Table 5: Summary of Autoregressive (AR) and Moving Average (MA) LAGS Structure of 

the Models Using PACF and ACF Plots.  

 PACF FOR Autoregressive (AR) 

Model 

ACF FOR Moving Average (MA) 

Model 

Variables LAGS LAGS 

COA 1,-2,7,10,-16,24,-26,27,-34 1,2,4, 5,……………………………,40 

COB 1,-2,7,10,-16,24,-26,27,-34 1,2,4, 5,……………………………,40 

COD 1,-2,7,10,-16,24,-26,27,-34 1,2,4, 5……………………………,40 

COWTI 1,-2,7,10,-16,24,-26,27,-34 1,2,4, 5,…………………………….,40 

 

The results in Table 5 are the summary of Autoregressive (AR) and Moving Average (MA) lags 

structure of the models Using PACF and ACF Plots. From the results obtained, the lags for the 

structures for our models is considered between -26 to 27 for the Autoregressive (AR) Model while 

Moving Average (MA) lags lie between 1 to 40. However, to avoid overparameterization the 

considered lag one alone. This follows the results of ARFIMA model estimation for Crude Oil 

Price Benchmarks as shown in Table 6 below. 
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Table 6: Results of ARFIMA model estimation for Crude Oil Price Benchmarks 
Raw 

Sales 

Models Parameters   Least AIC 

α Ф β D  AIC BIC  

COA 

 

ARFIMA(1, 

0.43,1) 

49. 722 

(9.128) 

0.849 

(0.000) 

0.011 

(0.889) 

0.431 

(0.000) 

20.695 

(0.000) 

2076.37 2076.37  

COB 

 

ARFIMA(1,-

0.021,1) 

1.917 

(0.000) 

0.984 

(0.000) 

0.236 

(0.003) 

-0.021 

(0.790) 

0.012 

(0.000) 

-531.204 -511.943 ARFIMA (1,-

0.021,1) 

COD ARFIMA(1, 

0.075,1) 

171.640 

(0.120) 

0.995 

(0.000) 

0.249 

(0.000) 

0.075 

(0.214) 

60.156 

(0.000) 

2429.254 2448.512  

COWTI ARFIMA(1, 

0.075,1) 

        

The results were all tested at 1%, 5% and 10% level of Significance  

 

The results in Table 6 is the ARFIMA model estimation for crude oil price benchmarks. The results 

show that the AR Model and MA are all positive and significantly different from zero at 1, 5 and 

10 percent level of significance. The ranges of values of (d) lies between -0.021 and 0.431.  The 

parameter (d) estimates are all significantly different from zero at 1, 5 and 10 percent level of 

significance except for crude oil price benchmark in brent whose is -0.021.  These indicate that 

there is the present of long-range dependence; the fractionally integrated roots (d) are anti-

persistence except for crude oil price benchmark in brent. The inference drawn from the 

investigations is that since an economic implication suggesting that shocks have a short-lived 

impact, with the crude oil price benchmark series exhibiting mean-reverting behavior except the 

case crude oil price benchmark in brent.  

 

Table 7: Results for FIGARCH model estimation for Crude Oil Price Benchmarks 

VARIABLES COA COB COD  COWTI 

Model Parameters FIGARCH (1, d,1) FIGARCH (1, d,1) FIGARCH(1,d,1) FIGARCH(1,d,1) 

CST(M) -0.009 

(0.940) 

-0.050 

(0.701) 

0.015 

(0.898) 

0.013 

(0.925) 

AR(1) 0.274 

(0.110) 

0.272 

(0.165) 

0.238 

(0.050) 

0.354 

(0.090) 

MA(1) 0.188 

(0.100) 

0.211 

(0.027) 

0.207 

(0.064) 

0.126 

(0.363) 

CST(V) 1.232 

(0.517) 

0.782 

(0.433) 

0.161 

(0.000) 

0.231 

(0.824) 

d-FIGARCH 0.580 

(0.000) 

0.564 

(0.000) 

1.450 

(0.000) 

0.484 

(0.000) 

ARCH(1) -0.986 

(0.000) 

-0.987 

(0.000) 

-0.015 

(0.970) 

-0.993 

(0.000) 

GARCH (1) -0.983 

(0.000) 

-0.975 

(0.000) 

0.909 

(0.000) 

-0.986 

(0.000) 

Loglikelihood -1430.18 -1823.05 -200.82 -200.82 

Means () 51.097 1.009 1.948 1.948 

Skewness -1.27 -0.907 0.432 0.432 

Kurtosis 0.70 -1.027 2.029` 2.029 

Jarque-Bera 100.47 62.818 22.918 22.918 
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The results were all tested at 1%, 5% and 10% level of Significance 

 

The results in Table 7 contain the FIGARCH model estimation for crude oil price benchmarks. 

The results show that the AR Model and MA are all positive but not significantly different from 

zero at 1, 5 and 10 percent   level of significance. The ARCH and GARCH   model components   

are all negative and significantly different from zero at 1, 5 and 10 percent level of significance 

except for FIGARCH model estimation using crude oil price benchmark in Dubai whose ARCH 

(1)model is negative and not significantly different from zero at 1, 5 and 10 percent level of 

significance. The crude oil price benchmark in Dubai' volatility is mainly driven by long-term 

factors, and short-term clustering is not significant. The model can be simplified by omitting the 

ARCH component, reducing the number of parameters to estimate since the ARCH component 

does not contribute significantly to the volatility process. 

 Also, d-FIGARCH fractionally integrated roots (d) are negative and significantly different from 

zero at 1, 5and 10 percent level of significance. The ranges of values of (d) are less than zero 

(0.580, 0.564, 0.484) except for FIGARCH model estimation using crude oil price benchmark in 

Dubai whose fractionally integrated root (d) (d-FIGARCH) parameter is 1.450.   The inference for 

the d-FIGARCH parameter to be less than zero indicates anti-persistence, or an asymmetric 

reaction to shocks. This means that the series tends to reverse itself. The d-FIGARCH parameter 

in FIGARCH model estimation using crude oil price average, brent and West Texas Intermediate 

benchmarks respond asymmetrically to shocks, there is short-term dependencies in the series, 

volatility tends to revert to its mean level quickly after a shock, and impact of past events on current 

volatility is limited. For the d-FIGARCH parameter (1.450) in FIGARCH model estimation using 

crude oil price benchmark in Dubai respond to shocks volatility remain high for an extended period 

after a shock. Also, the impact of past events on current volatility can be significant, even if they 

occurred far in the past. 

 

Table 8: Results for   HYGARCH   model in Crude Oil Price Benchmarks 

AIC -5.217 5.450 5.234 5.383 

SIC 5.285 5.509 5.293 5.442 

VARIABLES COA COB COD COWTI 

Model Parameters HYGARCH (1,d,1) HYGARCH 

(1,d,1) 

HYGARCH 

(1,d,1) 

HYGARCH 

(1,d,1) 

CST(M) 0.059 

(0.612) 

-0.084 

(0.509) 

0.128 

(0.618) 

0.686 

(0.070) 

AR(1) 0.189 

(0.190) 

0.188 

(0.004) 

0.132 

(0.700) 

0.012 

(0.971) 

MA(1) 0.196 

(0.092) 

0.252 

(0.004) 

0.260 

(0.918) 

0.181 

(0.577) 

CST(V) -0.677 

(0.276) 

-3.167 

(0.000) 

-0.026 

(0.918) 

42.612 

(0.010) 

d-FIGARCH 0.580 

(0.000) 

0.445 

(0.000) 

0.702 

(0.319) 

0.611 

(0.000) 

ARCH(1) -0.662 

(0.000) 

-0.962 

(0.000) 

0.841 

(0.027) 

-0.786 

(0.000) 

GARCH (1) -0.757 

(0.000) 

-0.956 

(0.000) 

0.907 

(0.000) 

-0.822 

(0.000) 
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The results were all tested at 1%, 5% and 10% level of Significance 

 

The results in Table 8 contain the HYGARCH model estimation for crude oil price benchmarks. 

The results show that the AR Model and MA are all positive and significantly different from zero 

at 1, 5 and 10 percent   level of significance except for HYGARCH model estimation using crude 

oil price benchmark in Dubai   and West Texas Intermediate  not significantly different from zero 

at 1, 5 and 10 percent level of significance. The significance of all AR and MA parameters suggests 

that using crude oil price average, brent and Dubai have long memory, meaning that past shocks 

and patterns continue to influence current and future behavior.  For crude oil price benchmark in 

Dubai   and West Texas Intermediate, it  suggests  that they are largely driven by random 

fluctuations.   Also, the ARCH and GARCH   model components   are all negative and significantly 

different from zero at 1, 5 and 10 percent level of significance except for HYGARCH model 

estimation using crude oil price benchmark in Dubai   that has positive coefficient. This suggests 

that the  volatility crude oil price average, brent and  West Texas Intermediate  is dampened. This 

means that  crude oil price average, brent and  West Texas Intermediate  has the tendency to revert 

to its mean level  with their  volatility decreasing over time. Also, for the ARCH and GARCH   

model components in HYGARCH model estimation using crude oil price benchmark in Dubai to 

have had positive and significant coefficient, its exhibits volatility amplification which is highly 

sensitive to past shocks and events. The d-FIGARCH parameters in HYGARCH model estimation 

are all positive and significantly different from zero at 1, 5 and 10 percent   level of significance 

respectively except for crude oil price benchmark in Dubai whose estimate is not significant. The 

positive d-FIGARCH parameter indicates that crude oil price average, brent and  West Texas 

Intermediate has persistent volatility, meaning that volatility tends to persist over time while the 

reverse is the case for crude oil price benchmark in Dubai 

 

Table 9: Results for   FIAPARCH model in Crude Oil Price Benchmarks  

Loglikelihood 0.646 0.397 0.370 -0.293 

Means () 0.268 0.276 0.277 0.164 

Skewness 5.358 5.145 5.674 -0.676 

Kurtosis 88.013 84.408 94.049 11.028 

Jarque-Bera 6.978 52.46 6694.6 22.918 

AIC 5.817 5.332 5.147 6.978 

SIC 5.254 5.400 5.215 7.046 

VARIABLES COA COB COD COWTI 

Model Parameters FIAPARCH (1, d, 1) FIAPARCH (1, 

d, 1) 

FIAPARCH (1, 

d, 1) 

FIAPARCH (1, d, 

1) 

CST(M) 0.059 

(NA) 

0.006 

(0.957) 

0.141 

(0.205) 

0.105 

(0.507) 

AR(1) 0.227 

(0.190) 

0.140 

(0.372) 

0.114 

(0.302) 

0.184 

(0.144) 

MA(1) 0.198 

(0.092) 

0.236 

(0.003) 

0.251 

(0.002) 

0.191 

(0.091) 

CST(V) 4.722 

(0.276) 

-1.779 

(0.837) 

92.271 

(0.741) 

3.376 

(0.363) 

d-FIGARCH 0.881 

(0.000) 

0.794 

(0.000) 

0.666 

(0.002) 

0.488 

(0.000) 
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The results were all tested at 1%, 5% and 10% level of Significance 

 

The results in Table 9 contain the FIAPARCH model estimation for crude oil price benchmarks. 

The results show that the AR Models of the FIAPARCH models  are all positive and not 

significantly different from zero at 1, 5 and 10 percent   level of significance. This means that 

crude oil price benchmarks are not reversal such that previous returns do have a negative impact 

on the current returns. Also, MA components of the FIAPARCH model are all positive and 

significantly different from zero at the one percent level of significance. This simply means 

previous errors associated crude oil price benchmark have positive impact on the current returns 

and they volatility clustering. The d-FIGARCH parameters in FIAGARCH model estimation are 

all positive and significantly different from zero at 1, 5 and 10 percent   level of significance 

respectively. This shows that long memory exists in all the crude oil price benchmarks. Also, for 

the ARCH of the FIAPARCH models are not significantly different from zero except for crude oil 

price benchmark average that is negative and significantly different from zero. This means there 

is a reversal in volatility clustering, where periods of high volatility are followed by periods 

of low volatility. GARCH   model components in FIAPARCH model estimation for crude oil price 

benchmarks are not significant. This means that volatility doesn’t persist over time.  The 

APARCH(Gamma1) coefficients for average , Brent, and  Dubai crude oil price benchmarks  

respectively are -0.17 ,- 0.262 and  -0.290 are significant at 5 percent  level  while that of  West 

Texas Intermediate is -0.223 is not significantly different from zero. This means that Brent, and 

Dubai crude oil price benchmarks negative shocks have a greater impact on volatility. Volatility 

in this context increases more when prices fall than when prices rise. This synonymous to a 

leverage effect, where negative returns lead to increased volatility. Also, APARCH(Delta) 

coefficients for FIAPARCH in modeling average, Brent, and Dubai crude oil price benchmarks 

respectively are  4.141,3.509, 3.215 and  3.165 are significant at 5 percent  level. This revealed 

that  average , Brent,  Dubai and West Texas Intermediate crude oil price benchmarks exhibits 

long memory in volatility. This simply means that average , Brent,  Dubai and West Texas 

Intermediate crude oil price benchmarks past volatility has a persistent impact on current volatility. 

The model selection test is shown in Table 10 below.  

 

ARCH(1) -3.335 

(0.000) 

-0.159 

(0.385) 

-0.006 

(0.971) 

-0.008 

(0.965) 

GARCH (1) 0.000 

(0.000) 

0.006 

(0.586) 

-0.002 

(0.711) 

0.001 

(0.664) 

APARCH(Gamma1)       -0.175 

(0.088)     

-0.262 

(0.088)     

-0.290 

(0.001) 

-0.223 

(0.316) 

APARCH(Delta)      4.141 

(0.088)     

3.509 

(0.000)    

3.215 

(0.000) 

3.165 

(0.000) 

Loglikelihood -12672.534 -1296.662 -1270.715 -1281.162 

Means () 0.268 0.276 0.277 0.251 

Skewness 5.358 5.145 5.674 4.790 

Kurtosis 88.213 83.409 94.049 77.648 

Jarque-Bera 6.978 3736.8 3736.8 22.918 

AIC 5.138 5.275 5.275  5.213 

SIC 5.214 5.352 5.352 5.289 
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Table 10:  Model selection Test 

 Models AIC BIC Model with least AIC 

COA ARFIMA (1, 0.43,1) 2076.37 2076.37  

COB ARFIMA (1, -0.021,1) -531.204 -511.943 ARFIMA (1, -0.021,1) 

COD ARFIMA (1, 0.075,1) 2429.254 2448.512  

COWTI ARFIMA (1, 0.075,1)   

COA FIGARCH (1, d,1) -5.217 5.285 

COB FIGARCH (1, d,1) 5.45 5.509 

COD  FIGARCH (1, d,1) 5.234 5.293 

COWTI FIGARCH (1, d,1) 5.383 5.442 

COA HYGARCH (1, d,1) 5.817 5.254 

COB HYGARCH (1, d,1) 5.332 5.4 

COD HYGARCH (1, d,1) 5.147 5.215 

COWTI HYGARCH (1, d,1) 6.978 7.046 

COA FIAPARCH (1, d, 1) 5.138 5.214 

COB FIAPARCH (1, d, 1) 5.275 5.352 

COD FIAPARCH (1, d, 1) 5.275 5.352 

COWTI FIAPARCH (1, d, 1) 5.213 5.289 

 

The results in Table 10 contains model selection test results. The selection of the best model for 

each model has been based on the Akaike information criteria and loss functions. Of the sixteen 

models selected for each of the long memory models, ARFIMA (1, -0.021,1) model is the overall 

best.  ARFIMA (1,-0.021,1) =   
(0.000)                                     (0.000) 

)(0.236)1()1)((0.984 -0.021

tt DDD  =−−
 (4.3)  

AIC    = -531.204     BIC  = - 511.943 

 

 

 
Figure 11: Quantile-Quantile Plot             
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Figure 12: Combine Plots for Raw, predicted and fractionally differenced crude Oil Price 

Benchmark in Brent 

 

Figure14: Result of ARFIMA model for Crude Oil Price Benchmark in Brent, impulse and 

Response Variable to Shocks by irfname 

 

Figures 11, 12, and 14 provide a visual analysis of the performance of the ARFIMA model in 

forecasting Brent crude oil prices. The figures include a quantile-quantile chart comparing the 

distribution of actual and forecasted prices, as well as a composite chart showing raw data, 

forecasted prices, and data with percentage differences. Additionally, the figures show the impulse 

response function of the ARFIMA model, illustrating how crude oil prices react to unexpected 
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changes and shocks over time. These figures provide a comprehensive assessment of the model's 

accuracy and its ability to capture the dynamics of crude oil price fluctuations. 

 

Conclusion  

In this study, we examined the presence of long-term memory in the crude oil price benchmark 

using a series of tests and models including Lo's R/S, GPH, Robinson test, ARFIMA, FIGARCH, 

HYGARCH and FIAPARCH models. The results repeatedly show that the crude oil price 

benchmark has asymmetry, non-stationarity and long-term dependence. We found significant 

long-term memory, persistence and volatility clustering in the crude oil price benchmark using the 

fractional integral root (d) and other parameters estimated by the ARFIMA, FIGARCH, 

HYGARCH and FIAPARCH models. The results consistently show that the crude oil price 

benchmark exhibits volatility clustering, anti-persistence and long-term dependence. The results 

suggest that the shocks have a transitory effect and that all series except the benchmark Brent crude 

oil price exhibit mean-reverting behavior. 
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